Menentukan Akar Persamaan Kuadrat dengan Melengkapkan Kuadrat Sempurna
https://blogmipa-matematika.blogspot.com/2017/07/cara-menentukan-akar-persamaan-kuadrat-dengan-melengkapkan-kuadrat-sempurna.html
Daftar Materi Matematika
Advertisement
Baca Juga:
Bentuk-bentuk 9 = 32. 4x2 = (2x)2, (x + 1)2 dan (2x – 3)2 merupakan beberapa contoh bentuk kuadrat sempurna. Pada hakikatnya, tiap bentuk kuadrat dapat dimanipulasi secara aljabar menjadi bentuk kuadrat sempurna. Manipulasi aljabar yang diperlukan dalam proses pengubahan itu adalah dengan menambah atau mengurangi bagian-bagian suku tetapan. Coba kalian perhatikan contoh berikut ini.
Misalkan terdapat bentuk persamaan kuadrat seperti berikut ini.
(x – 5)2 = 4
Dengan menyelesaikan ruas kiri, kita bisa mendapatkan sebuah persamaan kuadrat.
(x – 5)2 = 4
⇔ x2 – 10x + 25 = 4
⇔ x2 – 10x + 25 – 4 = 0
⇔ x2 – 10x + 21 = 0
Apabila alur untuk memperoleh persamaan kuadrat di atas kita balik, maka akan diperoleh cara menyelesaikan persamaan kuadrat yang disebut sebagai melengkapkan kuadrat sempurna. Perhatikan sekali lagi penyelesaian persamaan kuadrat berikut ini.
x2 – 10x + 21 = 0
⇔ x2 – 10x = –21
⇔ x2 – 10x + 25 = –21 + 25
⇔ x2 – 10x + 25 = 4
⇔ (x – 5)2 = 4
Sampai pada tahap ini, kita bisa dengan mudah memperoleh akar-akar persamaan kuadrat di atas yaitu sebagai berikut.
(x – 5)2 = 4
⇔ x – 5 = √4
⇔ x = 5 ± √4
Namun, ada satu hal yang perlu kalian perhatikan, yaitu angka 25 yang dicetak tebal bewarna merah dimana angka tersebut ditambahkan pada baris ketiga. Angka 25 ini, diperoleh dengan membagi koefisien x dengan dua kali koefisien x2, kemudian hasilnya dikuadratkan. Secara matematis ditulis (b/2a)2.
Pada persamaan x2 – 10x + 21 = 0, memiliki nilai a = 1 dan b = -10, sehingga
(b/2a)2 = (-10/2.1)2 = (-5)2 = 25
Berdasarkan proses di atas, kita bisa menyimpulkan langkah-langkah dalam menentukan akar-akar persamaan kuadrat dengan cara melengkapkan kuadrat sempurna. Misalnya terdapat sebuah persamaan berbentuk ax2 + bx + c = 0 dengan a, b, c ∈ R dan a ≠ 0. Maka dengan melengkapkan kuadrat sempurna, akar-akarnya dapat dicari langkah-langkah berikut.
#1 Tentukan nilai a, b dan c
#2 Bagi kedua ruas dengan a
#3 Kurangi kedua ruas dengan nilai c
Jika a = 1, maka pakai nilai c dari persamaan kuadrat lama
Jika a ≠ 1, maka pakai nilai c dari persamaan kuadrat baru dan berlaku untuk langkah berikutnya
#4 Tambahkan (b/2a)2 pada kedua ruas
#5 Ubah ruas kiri menjadi bentuk kuadrat sempurna
Bentuk persamaan kuadrat sempurna yang dimaksud adalah sebagai berikut.
(x + p)2 = q dengan q ≥ 0
|
#6 Tentukan akar-akar persamaan kuadrat
Akar persamaan kuadrat ditentukan sesuai dengan bentuk persamaan yang terakhir. Adapun akar dari persamaan tersebut dapat dicari dengan rumus berikut ini.
(x + p) = ± √q atau x = –p ± √q
|
Agar kalian dapat memahami cara menerapkan langkah-langkah di atas, coba pahami beberapa contoh soal tentang cara menentukan akar-akar persamaan kuadrat dengan melengkapi kuadrat sempurna berikut ini.
Contoh Soal #1
Dengan melengkapkan kuadrat sempurna, tentukanlah akar-akar dari persamaan x2 + 8x + 12 = 0
Jawab
1) Persamaan x2 + 8x + 12 = 0 memiliki nilai a = 1, b = 8 dan c = 12
2) Karena a = 1, maka kita langsung menuju langkah 3
3) Kurangi kedua ruas dengan nilai c
⇔ x2 + 8x + 12 = 0
⇔ x2 + 8x + 12 – 12 = 0 – 12
⇔ x2 + 8x = –12
4) Tambahkan (b/2a)2 = (8/2.1)2 = 16 pada kedua ruas.
⇔ x2 + 8x = –12
⇔ x2 + 8x + 16 = –12 + 16
⇔ x2 + 8x + 16 = 4
5) Ubah ruas kiri menjadi bentuk kuadrat sempurna (x + p)2 = q
⇔ x2 + 8x + 16 = 4
⇔ (x + 4)2 = 4
6) Langkah terakhir menentukan akar dengan rumus (x + p) = ± √q
⇔ (x + 4)2 = 4
⇔ x + 4 = ± √4
⇔ x + 4 = ± 2
⇔ x1 = –4 + 2 = –2 atau x2 = –4 – 2 = –6
Jadi, akar-akarnya adalah x1 = –2 atau x2 = –6 ditulis HP = {–6, –2}
Contoh Soal #2
Carilah akar-akar persamaan x2 – 6x – 7 = 0 dengan cara melengkapi kuadrat sempurna.
Jawab
1) Persamaan x2 – 6x – 7 = 0 memiliki nilai a = 1, b = -6 dan c = -7.
2) Karena a = 1, maka kita langsung menuju langkah 3
3) Kurangi kedua ruas dengan nilai c
⇔ x2 – 6x – 7 = 0
⇔ x2 – 6x – 7 – (–7) = 0 – (–7)
⇔ x2 – 6x – 7 + 7 = 7
⇔ x2 – 6x = 7
4) Tambahkan (b/2a)2 = (-6/2.1)2 = 9 pada kedua ruas.
⇔ x2 – 6x = 7
⇔ x2 – 6x + 9 = 7 + 9
⇔ x2 – 6x + 9 = 16
5) Ubah ruas kiri menjadi bentuk kuadrat sempurna (x + p)2 = q
⇔ x2 – 6x + 9 = 16
⇔ (x – 3)2 = 16
6) Langkah terakhir menentukan akar dengan rumus (x + p) = ± √q
⇔ (x – 3)2 = 16
⇔ x – 3 = ± √16
⇔ x – 3 = ± 4
⇔ x1 = 3 + 4 = 7 atau x2 = 3 – 4 = –1
Jadi, akar-akarnya adalah x1 = 7 atau x2 = –1 ditulis HP = {–1, 7}
Contoh Soal #3
Tentukan akar-akar persamaan x2 – 8x + 7 = 0 dengan cara melengkapkan kuadrat sempurna.
Jawab
1) Persamaan x2 – 8x + 7 = 0 memiliki nilai a = 1, b = -8 dan c = 7.
2) Karena a = 1, maka kita langsung menuju langkah 3
3) Kurangi kedua ruas dengan nilai c
⇔ x2 – 8x + 7 = 0
⇔ x2 – 8x + 7 – 7 = 0 – 7
⇔ x2 – 8x = –7
4) Tambahkan (b/2a)2 = (-8/2.1)2 = 16 pada kedua ruas.
⇔ x2 – 8x = –7
⇔ x2 – 8x +16 = –7 + 16
⇔ x2 – 8x +16 = 9
5) Ubah ruas kiri menjadi bentuk kuadrat sempurna (x + p)2 = q
⇔ x2 – 8x +16 = 9
⇔ (x – 4)2 = 9
6) Langkah terakhir menentukan akar dengan rumus (x + p) = ± √q
⇔ (x – 4)2 = 9
⇔ x – 4 = ± √9
⇔ x – 4 = ± 3
⇔ x1 = 4 + 3 = 7 atau x2 = 4 – 3 = 1
Jadi, akar-akarnya adalah x1 = 7 atau x2 = 1 ditulis HP = {1, 7}
Contoh Soal #4
Carilah akar-akar persamaan x2 + 3x – 10 = 0 dengan melengkapi kuadrat sempurna.
Jawab
1) Persamaan x2 + 3x – 10 = 0 memiliki nilai a = 1, b = 3 dan c = -10.
2) Karena a = 1, maka kita langsung menuju langkah 3
3) Kurangi kedua ruas dengan nilai c
⇔ x2 + 3x – 10 = 0
⇔ x2 + 3x – 10 – (–10) = 0 – (–10)
⇔ x2 + 3x – 10 + 10 = 10
⇔ x2 + 3x = 10
4) Tambahkan (b/2a)2 = (3/2.1)2 = 9/4 pada kedua ruas.
⇔ x2 + 3x = 10
⇔ x2 + 3x + 9/4 = 10 + 9/4
⇔ x2 + 3x + 9/4 = 49/4
5) Ubah ruas kiri menjadi bentuk kuadrat sempurna (x + p)2 = q
⇔ x2 + 3x + 9/4 = 49/4
⇔ (x + 3/2)2 = 49/4
6) Langkah terakhir menentukan akar dengan rumus (x + p) = ± √q
⇔ (x + 3/2)2 = 49/4
⇔ x + 3/2 = ± √(49/4)
⇔ x + 3/2 = ± 7/2
⇔ x1 = –3/2 + 7/2 = 4/2 = 2 atau x2 = –3/2 – 7/2 = –10/2 = –5
Jadi, akar-akarnya adalah x1 = 2 atau x2 = –5 ditulis HP = {1, 7}
Contoh Soal #5
Dengan melengkapi kuadrat sempurna, tentukan akar-akar dari persamaan 2x2 + 4x – 6 = 0
Jawab
1) Persamaan 2x2 + 4x – 6 = 0 memiliki nilai a = 2, b = 4 dan c = -6.
2) Karena a ≠ 1, maka kita bagi kedua ruas dengan nilai a
⇔ 2x2 + 4x – 6 = 0
⇔ (2x2 + 4x – 6)/2 = 0/2
⇔ x2 + 2x – 3 = 0
Dari persamaan kuadrat yang baru, kita peroleh nilai a = 1, b = 2 dan c = -3
3) Kurangi kedua ruas dengan nilai c
⇔ x2 + 2x – 3 = 0
⇔ x2 + 2x – 3 – (–3) = 0 – (–3)
⇔ x2 + 2x – 3 + 3 = 3
⇔ x2 + 2x = 3
4) Tambahkan (b/2a)2 = (2/2.1)2 = 1 pada kedua ruas.
⇔ x2 + 2x = 3
⇔ x2 + 2x + 1 = 3 + 1
⇔ x2 + 2x + 1 = 4
5) Ubah ruas kiri menjadi bentuk kuadrat sempurna (x + p)2 = q
⇔ x2 + 2x + 1 = 4
⇔ (x + 1)2 = 4
6) Langkah terakhir menentukan akar dengan rumus (x + p) = ± √q
⇔ (x + 1)2 = 4
⇔ x + 1 = ± √4
⇔ x + 1 = ± 2
⇔ x1 = –1 + 2 = 1 atau x2 = –1 – 2 = –3
Jadi, akar-akarnya adalah x1 = 1 atau x2 = –3 ditulis HP = {–3, 1}
Demikianlah artikel tentang cara mudah menentukan akar-akar persamaan kuadrat dengan melengkapkan kuadrat sempurna beserta rumus, contoh soal dan pembahasannya. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Terimakasih ya.... Dengan artikel ini saya jadi lebih mengerti materi yang diajarkan guru saya ><
ReplyDelete